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Supercritical Flow Past Symmetrical Airfoils

by

Kon-Ming Li

Abstract

A numerical method is developed for computing steady super-

critical flow about an ellipse at zero angle of attack. The flow

is assumed to be two-dimensional, inviscid, isentropic, and

irrotational. The free stream Mach number lies in the high

subsonic range so that a shock wave occurs locally near the body.

The full potential equations are solved by Telenin's Method

and the Method of Lines. Smooth interpolating functions are

assumed for the unknown flow variables in selected coordinate

directions. The resulting set of ordinary differential equations

is then integrated away from or along the body depending upon

whether the flow is smooth or discontinuous. Jump conditions of

the governing equations are applied across the shock wave so that

it is perfectly sharp. A doublet solution for flow past a closed

body is used as the far field boundary condition.

Supercritical flow calculations have been performed for ellipses

with thickness ratio of 0.2 and 0.4 at various free-stream Mach

numbers. The present results are compared with the shock-capturing

method, and good agreement is obtained.
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1.0 Introduction

Within the past decade there has been strong interest in transonic

flow research. The fact that commercial jets often fly at transonic

speeds makes it very desirable to have methods which can predict air-

foil lift and drag in this flow regime.

The flow is called transonic if both subsonic and supersonic

regions are present in the field. Although most airplanes fly at

subsonic speeds, the local flow velocities often become supersonic

at the top of the wing. In a typical transonic flow field, the

embedded supersonic region is usually terminated by means of a

shock wave.

The main difficulties in transonic flow calculations are due to

the inherent nonlinearities of the equations governing transonic flow,

and the fact that the equations change type within the solution

domain, from elliptic in the subsonic region to hyperbolic in the

supersonic region. In addition, special provision must be made to V
handle the embedded shock wave in the flow field.

There are three main categories of numerical methods for solving

steady inviscid flow past an airfoil in the transonic regime. These

are finite difference methods, the hodograph method and interpolation

methods.

Finite difference techniques have received the most attention in

transonic flow research in recent years and we now outline them

briefly.

Magnus and Yoshihara 119701 first solved the unsteady Euler

equations using an explicit second-order difference scheme.

Unfortunately, the method requires a very large amount of computation
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time to achieve steady state conditions, and is therefore very expensive

for practical calculations.

An alternative to the time dependent approach is the use of

relaxation methods. Murman and Cole [1971] successfully solved the

transonic small disturbance equations by introducing a mixed finite

difference system. The direction of differencing is biased depending

upon whether the flow is subsonic or supersonic. The truncation error

of the difference scheme has the effect of artificial viscosity, so

shock waves appear naturally during the course of calculation, although

they are usually spread over 3-4 mesh points. The system of difference

equations is solved by successive line relaxation, and the computed

results agree well with experimental data for a circular arc airfoil.

The method was extended by Krupp and Murman [1972] to lifting

airfoils and slender bodies. Steger and Lomax [19721 solved the full

potential equations for lifting airfoils by successive line over-

relaxation (SLOR). An interactive graphic terminal is used to change

the values of circulation and relaxation parameters as the relaxation

is proceeding. To account for flows not aligned to the coordinate

system, Jameson [1974] introduced a rotated differencing scheme in

which the direction of upwind differencing is rotated to conform with

the local flow direction. The system of difference equations is then

iterated by simulating an artificial time dependent equation.

Ballhaus, Jameson and Albert [1978] developed an implicit approximate

factorization (AF) algorithm for the solution of steady state transonic

small disturbance equation, which has a much better rate of con-

vergence than the SLOR algorithm. Following the idea of Jameson's

rotating upwind difference scheme, Holst and Ballhaus [1979] solved

the full potential equation in conservation form to ensure conservative

Owri
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shock capturing. Artificial viscosity is added implicitly by retarding

tthe density according to local Mach number. Holst [1979] later

applied the method using an arbitrary mesh, and obtained good agree-

ment with independently computed results.

The hodograph method has a long history in transonic flow calcula-

tions, taking advantage of the property that the governing equations

of plane motion become linear when coordinates in the physical plane

are replaced by the velocity components as independent variables.

Using the hodograph transformation, Nieuwland [1967] developed a

technique for computing shock-free, symmetrical, supercritical flows

about quasi-elliptic airfoil sections. The method was later extended

by Boerstoel [1967] to present a catalog of solutions for certain body

shapes. Bauer, Garabedian and Korn [1972] also used the hodograph

method to generate a shock-free flow with the corresponding boundary

shapes.

The final category of the methods makes use of quasi-analytic

techniques. These are the Method of Integral Relations (MIR),

Telenin's method and the Method of Lines (see Holt [1977]). Each

approach uses smooth interpolating functions to represent the unknown

variables in a selected coordinate direction. The partial differential

equations are thereby reduced to a set of ordinary differential equa-

tions along a set of rays in the flow field. The resulting equations

are then solved as an initial value problem.

tMIR was first applied by Chushkin [1957] for subsonic critical

flow past an ellipse or ellipsoid. Later, Holt and Masson [1971]

computed supercritical flow about a cylinder with the full potential

equations. Tai [1974] also used MIR to solve the steady Euler equa-

tions for a lifting airfoil. Both of the above methods located a
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shock point on the body, but no details about the shape of the shock

in the interior of the flow field are obtained.

Chattot [19781 applied Telenin's Method in the hodograph plane

for flow past a double wedge. A shock is fitted in the flow field to

eliminate the limit lines. The complete shock location is obtained,

but the method is restricted to a double wedge, where the boundaries

in the hodograph plane are known in advance. Telenin's Method was

also used by Gross and Holt [1975] to calculate critical and super-

critical shock-free flow past ellipses.

In the present work supercritical flow past an ellipse at zero

angle of attack is calculated. The steady two-dimensional full

potential equations are solved by Telenin's Method and the Method

of Lines. The jump conditions of the equations are used to fit a

shock in the flow field to terminate the supersonic region. The

formulation of the equations of motion and the details of the tran-

sonic flow field are discussed in Section 2. Applications of

Telenin's Method and the Method of Lines to the supercritical flow

problem are described in Section 3. Section 4 contains discussions

of the supercritical calculations. The conclusions are presented in

Section 5.

S.A ... .*
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2.0 Formulation of the Problem

We consider the two-dimensional flow of a uniform stream past an

ellipse. The free stream Mach number lies in the high subsonic range

so that, while the flow in the region far from the ellipse is wholly

subsonic, the flow field in the neighborhood of the ellipse is of

mixed type with subsonic regions near the forward and rear stagnation

points and a local supersonic region near the maximum thickness section

of the ellipse. The local supersonic region is usually bounded by a

shock wave at its downstream end. A typical flow pattern is shown in

Fig. 2(b).

Viscosity effects are confined to the boundary layer near the

surface of the ellipse. The boundary layer calculations will be

carried out subsequently since these require knowledge of the inviscid

flow field as a starting point. The shock terminating the local

supersonic region causes the boundary layer to separate so that the

inviscid and viscous flows interact significantly. However, the main

influence of boundary layer separation is to introduce an effective

thickening of the ellipse downstream of the shock. Interaction

effects are therefore determined by integrating the inviscid and

boundary layer equations separately and matching the calculations

along the effective viscous-inviscid boundary.

The shock wave introduces entropy changes on its downstream

side. Provided that the minor-major axis ratio (maximum thickness

ratio) of the ellipse is sufficiently small and, provided that the

free stream Mach number is subsonic, the local Mach number ahead of

the shock wave will not exceed the value 1.3. The shock wave strength

is then sufficiently small to ensure that entropy changes can be

P
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neglected.

To verify this statement we use the following perfect gas

relationship to determine entropy changes across a shock wave:

AS 1 2nI 2 YM2 -y+1 -_ in[ (l M

R y-- - y+l y- 1 (2.1)(Y-I)M2+2

Here, M is the incident Mach number (just upstream of the shock),

y the ratio of specific heats, R the gas constant, and AS the change

in entropy. If M=1.3 and y=1.4, then

As
__ = 0.0208 (2.2)

Equation (2.1) can be rewritten as

P2 X~ep(.-_A (Y-l1)

2= Pl (PR(A (2.3)

where p is the pressure and P the density. Subscripts 1 and 2 denote

conditions ahead and behind the shock, respectively.

From Eq. (2.2)

[exp(-AS)] (y-l) = 1.0084 (2.4)

It follows that for shocks with incidenct Mach numbers M< 1.3 the

error introduced by the isentropic assumption is about 0.80. We can

therefore assume, in the present analysis, that the flow field is

isentropic and irrotational.

2.1 Equations of Motion

We consider steady, two-dimensional flow of a uniform air stream

past an ellipse at high subsonic free stream Mach numbers. The flow

is assumed to be inviscid and irrotational. The governing equations

of motion are then
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Continuity

div(pq) = 0 (2.5)

Irrotationality

curl(q) = 0 (2.6)

Writing these equations in elliptic coordinates:

a(puh) a(pvh)+ =0 (2.7)

a(vh) a(uh) = (2.8)

The elliptic coordinates and n are defined by (Milne-Thomson

[1972]):

x = c cosh cos n (2.9)

y = c sinh sin n (2.10)

where x and y are Cartesian coordinates, c is a constant, u and v

are the velocity components in the C and n directions, respectively,

and h is the metric coefficient given by:

h = c(sinh 2  + sin 2n)2 (2.11)

It can be shown that curves of constant t represent confocal

ellipses and curves of constant n confocal hyperbolae. The foci of

the ellipses or hyperbolae are located at (±c,o). Some curves of

the elliptic coordinate system with c= 1 are plotted in Fig. 1.

The final equation to complete the set is Bernoulli's equation:

1 2 1 2
2 o 2 qmax

- ______, F ~ 4-* -.,".
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The quantity II is the enthalpy (per unit mass), q is the flow speed,

qmax the maximum steady expansion speed, and the subscript o denotes

stagnation conditions. Equation (2.12) may be written

H - 2 (2.13)
0 max

For a perfect gas with constant specific heats

H, = -l- (2.14)

By further assuming isentropic flow

p ( 
Y  2.15)

it follows that

__. = ()- (2 16)ito Po P o
0 p0 0

Substituting Eq. (2.16) into (2.13) and solving for p/ ° we obtain
0

p = (I-q--- 2 )1 /Y -1  (2.17)

0max

The three equations (2.7), (2.8) and (2.17) are the three rela-

tions required to determine the three basic unknowns u,v and p.

We now express all variables in dimensionless form by dividing

distances by c, velocities by q, and the density by the stagnation

density p0. Retaining the same symbols for the non-dimensional

variables, the equations of motion are

a(puh) + a(pvh) = 0 (2.18)

a(vh) - (uh) 0 (2.19)

S q 2 - l/y-1 u 2 - 2 2 1/- -  (2.20)
pi- )=(- v

4,
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and

h = (sinh 2 + sin 2n)"2 (2.211

x = cosh C cos n (2.22)

y = sinh C sin n (2.23)

2.2 Description of the Flow Field

Before we proceed to solve the equations of motion, it is

advantageous to understand the physical flow field and be able to

choose an effective method to solve the problem.

At very low Mach numbers, the compressibility is very small,

hence the flow can be assumed to be incompressible. The analytic

solution for incompressible flow past an elliptic cylinder (Milne-

Thomson 11972]) is given by

U o
u = e cos ri sinh(U- o) (2.24)

U o

v =--e sin r cosh( -Co) (2.25)

0
where U is the free stream velocity and othe ellipse representing

the body of the cylinder. On the body, the normal component u of

the velocity is zero, and the tangential velocity is given by Eq.

(2.25). It can be seen that the flow accelerates from stagnation at

the leading edge (n= 7T) to a maximum speed at the apex of the

cylinder (n = -/2), and then decelerates back to stagnation at the

trailing edge (n = 0). At zero angle of attack, the flow is sym-

metric about both the y-axis and the x-axis.

As the free stream Mach number is increased, compressibility

effects become more important, and the compressible equations of

tte . .. rz



10

motion have to be solved. However, the flow behavior remains

qualitatively the same if the flow is subsonic throughout the field.

When the maximum local Mach number reaches the value 1.0, the flow

is said to be critical. The free stream Mach number which produces

such a flow is called the critical free stream Mach number.

For supercritical flow, a small supersonic region is embedded

in the subsonic flow field. Although shock free supercritical flows

can be produced, they are generally unstable (see Busemann [1949],

Frankl [1950], Guderley [1953], Morawetz [1956,1957]) in the

sense that a small perturbation of the body contour in the super-

sonic region leads to a flow that is discontinuous. This will be

assumed the case for our transonic flow calculation. A typical

transonic flow field is depicted in Fig. 2(b).

. ,
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3.0 Numerical Methods

Telenin's Method and the Method of Lines are used as the

numerical schemes to solve the equations of motion. The two methods

are very similar. In Telenin's Method the variations of the variables

in one coordinate direction are represented by some smooth inter-

polating functions. In our problem, symmetry conditions suggest

the use of Fourier series of the form:

N

u(,n) = E a. ()cos(i-1) (3.1)i=l

N-2
v( ,T) = E b.( )sin iT1 (3.2)

i=l 1

where N is the number of rays. Along the jth ray

N
u. u(i,n.) = ai (E)cos(i-1)n. (3.3)

The coefficient ai can be obtained by inverting the matrix {cos(i-1)r},

N
ai = l z A..u. i= 1,...,N (3.4)

1 j=l

where {A ij) ={cos(j-l)ni1 . Equation (3.1) is differentiated to

obtain the n derivatives, giving

u 9u(,,n) N
(-) = ______ = n a.. (&) (1-i)sin(i-l)TI (3.5)

Substituting Eq. (3.4) into Eq. (3.5) yields

N N
= , ( 1 A..u.) (1-i)sin(i-l) I (3.6)
i=l j=1 .

Interchanging the order of operation,

N N N
uj (iA. E (l-i)sin(i-1)n )u. =E l F u (3.7)

jli=l 'j i j=l 0 3
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Similarly, for the derivative of v

N-t _") Gzlv,2,...N (3.8)

where

N
F~. = Z A ij (1-i)sin(i-l)n z  (3.9)

i=1 '

N-2
G E i: B.. i cos in (3.10)

{B..} = {sin inj~l}-I  (3.11)

In the Method of Lines, the n derivatives are approximated by

finite differences. Three-point or five-point difference schemes are

used depending on the order of accuracy required. The derivative

representation has the same form as given by Eq. (3.7) with coef-

ficients F.. derived from Taylor series expansions. Hence in terms

of the solution method and accuracy, we may consider the two methods

to be equivalent.

It is convenient to have expressions for av/) and 5u/ t.

From Eq. (2.19)

v hh av ah 2u (3.12)

Solving for av/)M:

av 1 h 3u - h (
(u L h v (3.13)

The definition of h implies that

Ah sinh 2& (3.14)

7 2h

and

.... ...> ____ ______ ,___ _ ,, - . '. ... ,, '
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Th sin 2 (
-n =  2h

The above expressions are substituted into Eq. (3.13) to give:

2v =u u sin 2n v sinh 2(,
2h2 2h 2

From Eqs. (2.18) and (2.20), we obtain

u ah 3u u p- 1 (pvh)h a,+  - +  =(1.17)
h 7 p - ph I

and

Du Dv
1 a 2[u -+ V -]

S32(3.18)t, (-y- ) l-u 2-v2 )

Substituting (3.18) into (3.17) and solving for 3u/3 ,

3u- P1  (3.19)

where

P = 2uv(-v + - ) + 2v2 -

- Dv v sin 2,i u sinh 2
-(y-l) 1-u -v + 2 ) (3.20)

2h' 2h"

Q= (Y-1)(l-v 2) - (y+l)u 2  (3.21)

Substitution of expressions (3.7) and (3.8) into Eqs. (3.16) and (3.19)

results in a system of (2 xN -2) ordinary differential equations that

can be integrated simultaneously in the C direction, along N rays of

constant n.

3.1 Boundary Conditions

Boundary conditions have to be prescribed in order to specify

the problem uniquely. On the body, we require that normal velocity

,.
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be zero, that is

u 0 for r 0 (3.22)

where ° is the elliptic coordinate of the body. For flow past an
0

elliptic cylinder at zero angle of attack, the flow field is sym-

metric about the x-axis, so

v=O

and

3u 0 for n= 0 and r (3.23)

Finally, the flow approaches that of a uniform free stream at infinity:

u - U Cos q

and

v -_ sin n as 1 -. (3.24)

However, in practice, it is more convenient to specify the far

field boundary conditions at a finite distance from the body.

Following Murman and Cole 119711, an analytical solution for the far

field is derived using transonic small disturbance theory. The basic

transonic equation is

[K4~ x - (y*1)€ /2]x ¢ - = 0 (3.25)
x x x

yy

with the variables and parameters defined by:

1l/3y= y (3.26)

( 2 /~'3 (3.27)
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q x 62/3q 
i2 / 3 + (3.28)

0, =

!Y- 6q/ (3.29)

x x ! the perturbation velocities (3.30)
q yy

Here 6 is the thickness ratio of the airfoil (or ellipse), M. the free

stream Mach number, q and q are the velocity components in the x and
x y

y directions, respectively.

We rewrite Eq. (3.25) in the form

LOp -= K xx+ = [(Y+l)/2](U2)x (3.31)

yy

Applying Green's formula for L in the upper half plane and allowing

for a shock jump in the flow field, we obtain the basic integral

equation

0. (Xi xx 1 2 F(xl)dx'
TTK

2  1 (x-x + Ky

+ . .x dx 'dy / (3.32)
2 2 i2 K21TK 0 (x-x') + K(y-y )

The far field is thus that of the usual doublet for a closed body

(x,) - D x 2+ (3.33)
21K2 (x 2 + Ky2 )

where

D = doublet strength

=2 1 F(x)dx + 121Yl O q~~)} dxdy (3.34)

The doublet strength consists of the usual term proportional to

I *'
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the airfoil volume and a nonlinear contribution, unknown in advance.

In the numerical procedure D has to be calculated as one of the

unknowns of the problem. Differentiating Eq. (3.33),

2
D D (3.35)

x 2K (x2 + K_2 (2

q/ DK xy (3.36)
(x + K22

The flow velocities expressed in the and n directions are given by:

u = .1 (qx sinh cos n+qy cosh C sin rn) (3.37)

IV = (-q cosh sin n+q sinh cos 9) (3.38)
X y

Substitution of Eqs. (3.28) and (3.29) into (3.37) and (3.38) gives

the necessary boundary conditions in the far field.

3.2 Jump Conditions

For transonic flow at sufficiently high subsonic free stream

Mach number, the flow becomes supercritical. A region of local

supersonic flow is developed over the maximum thickness region of the

body and this is terminated on the downstream side by a shock wave.

In the inviscid flow approximation, the shock wave is modeled by a

jump discontinuity in the solution. To ensure uniqueness, we require

that entropy increases across the shock wave. For the full potential

approximation, the entropy change is assumed to be negligible.

Uniqueness is attained by allowing only the existence of compression

shocks, but not expansion shocks. The jump conditions for the full

potential equations are different from the usual Rankine-Hugoniot

relations, and can be derived by writing the equations of motion in

conservation form. Applying the two-dimensional form of the divergence

I.'
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theorem to Eqs. (2.18) and (2.19), we obtain

<puh>(dn)s- <pvh>(d)s = 0 (3.39)

and

<vh>(dn) + <uh >(d ) = 0 (3.40)

where < > denote a jump in the quantity across the shock and subscript

s denotes an element in the shock surface. Equations (3.39) and (3.40)

can be rewritten as

<puh>r1 - <pvh> = 0 (3.41)
5

<vh>n + <uh>= 0 (3.42)

where

-S ( is the shock wave angle (3.43)

In Eqs. (3.41) and (3.42) h is the metric coefficient which depends

only on the geometry of the coordinate system and is continuous

throughout the field, hence can be eliminated from Eqs. (3.41) and

(3.42). The final form of the jump conditions is then

<pu>T- <pv> = 0 (3.44)

s

<v>ri1+ <U> = 0 (3.45)

Equations (3.44) and (3.45) represent, respectively, the conservation

of mass flux and continuity of tangential velocity across the shock

wave. The density p in Eq. (3.44) is given by Bernoulli's equation

(2.20). Thus the jump conditions for the full potential equations are

completely specified.



18

It is interesting to compare the shock-fitting and shock-

capturing methods. In the finite difference treatment of super-

critical flow, artificial viscosity is added to the differential

equations as a result of the truncation errors generated by the

difference equations. No explicit jump conditions are needed,

provided that the equations are written in divergence form to

conserve mass flux. Shock waves evolve naturally during the course

of the calculation, although they usually spread over several mesh

points. In principle, the shock wave can be made arbitrarily

sharp by refining the mesh points near to it; however, this will

slow down the rate of convergence considerably. By employing a

shock-fitting technique, the jump conditions are satisfied exactly.

The shock wave is perfectly sharp, hence no refinement is necessary.

The drawback of this method is that the iteration may not converge

if the initial guess of the shock location is too inaccurate.

3.3 Singular Points

In Section 3.0 we assumed a Fourier series representation in the

9 direction for the unknown flow quantities, and, as a result,

derived a set of first order ordinary differential equations (Eqs.

(3.16) and (3.19)) in the direction. However, it is also pos-

sible to assume an analytic representation in the direction and

obtain a set of ordinary differential equations in the n direction.

The advantages and disadvantages of each formulation will become

apparent at a later stage.

For the latter formulation, we must derive expressions for

au/an and av/an. Rearranging Eqs. (2.18) and (2.19), and solving

for av/3n and au/an, we obtain



1)

Du =v v sinh 2 u sin 2n (3.46)
2h 2  2h 2

v P 2
~v _ 2(3.47)

Q2

where

P = u 3 v 2Tu

P 2uv (L- I 'v-) + 2u

2 u u sinh 2 v sin 2n)

-(y-l) (1-u 2 -v 2 ) (- + s 2 (3.48)
2h2  2h'

Q2 = (y-l) (1-u 2) - (y+l)v 2  (3.49)

When Eqs. (3.16) and (3.19) are examined in detail, it is

observed that they have a saddle point singularity when the denominator

Q1 becomes zero, that is,

2 2
(y-1)(1-v 2 ) = (y+l)u = 0 (3.50)

after rearranging, we obtain

u = (3.5)
y+l

which represents an ellipse in the u,v plane. From Bernoulli's

equation:

2 (y-1)M2  ,

q 2 (3.52)
2 + (y-l)M 

2

so the non-dimensional critical velocity q is

q y+l (3.53)

Substituting Eq. (3.53) into (3.51), the ellipse of singularities may

be written as

4,
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2 2u Vu + = 1 (3.54)-2 1
q

The singular ellipse and the sonic circle are both plotted in Fig. 3a.

We can see that all points on the ellipse lie outside the sonic circle,

except for v=0, u= ±q For critical flow, only one point is on the

sonic circle, namely u= 0, v ±q , therefore there are no singularities

for a critical flow calculation when integrating away from the body.

It is apparent that no singularities will be encountered even for

supercritical flow calculations.

On the other hand, using the second formulation and integrating

in the q direction, th. denominator of Eq. (3.47) becomes zero when

2 2
(y-1)(1-u 2) - (y+l)v = 0 (3.55)

Hence the singular ellipse in the u,v plane is given by

2u +--*2 1 (3. 56)

q

which is shown in Fig. 3b. But any critical or supercritical flow has

a point on the body with u =0 and v= -q , which is a point on the

ellipse given by (3.56). Therefore it is obvious that integration

in the q direction always leads to at least one singularity at sonic

points on or near the body.

3.4 Implementation of the Numerical Scheme

As discussed in the preceding section, saddle point singularities

will arise if we assume interpolating functions in the C direction.

Hence it will be appropriate to use the first formulation given in

Section 3.0. Expressions (3.7) and (3.8) are substituted into Eqs.

(3.16) and (3.19) to form a set of (2 xN- 2) simultaneous ordinary

differential equations. At = 0o' the flow tangency condition on

~4J
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the body is given by Eq. (3.22). An initial estimate of values of

the tangential velocities v on the surface is made, and using these0

as initial data, the equations are integrated away from the ellipse

t= CO. A variabie step, fifth-order Runge-Kutta method is used to

integrate the differential equations. The integration is terminated

at a distance sufficiently far away from the body, say E= F,, which

will be defined later. The velocities v calculated at F, are then

compared with the far field velocities given by Eq. (3.38). If the

two sets of values differ, tangential velocities on the surface are

then adjusted and the integration is repeated. The procedure is

repeated until the far field solution converges. This can be done

very efficiently by the use of Powell's method (Powell, 1964), which

minimizes the sum of squares of the differences between the far field

velocities by adjusting the surface velocities. The iteration is

terminated when the sum satisfies the specified tolerance.

Gilinskii, Telenin and Tinyakov 11964] pointed out that solving

a l)irichlet problem as a Cauchy problem is inherently unstable with

respect to the prescribed data. This phenomenon is known as

Hadamard instability. Jones and South [1972] also encountered

Hadamard instability in applying the Method of Lines and found growth

in error proportional to exp(NI), where N is the number of rays and

the direction of integration. As a consequence, the number of rays

and the far field distance have to be restricted. However, if we wish

to obtain a solution with reasonable accuracy, we must employ suf-

ficient number of rays to represent the variables. The occurrence

of a shock wave on the body makes it even more desirable to have a de-

tailed representation near the body.

To overcome the above difficulties, we propose to solve the
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problem in two stages. In the first stage, a very coarse representation

of the variables is used, which enables us to integrate the equations

away from the body to the far field without instability problems. A

supercritical shock free flow is obtained from this calculation.

However, as discussed in Section 2.2, shockless flows are known to be

unstable and not likely to occur in practical situations. Hence, in

our supercritical flow calculation, we always assume that the flow is

discontinuous. In order to model the shock wave, we have to treat the

region near the body in a different manner. The p"ocedure for the

different stages is described in the following sections.

3.4.1 Coarse Solution

In this stage, we assume Fourier series representation of the

form (3.1) and (3.2) for u and v. For flow over an ellipse, we further

notice that the flow is symmetric about the y-axis when the solution

is smooth. Thus we can economize on the number of rays by assuming

the series of the form:

N-I

u(E) = 1 a.(i)cos(2i-1)n (3.57)
i=l '

N-1

v( ,n)= 1 h. ()sin(2i-l)n (3.58)i=l I

So for the coarse solution, we only need to compute the flow in the

second quadrant. Equations (3.16) and (3.19) are integrated

simultaneously from r to &.. Boundary conditions are satisifed by

using the procedure described in Section 3.4. At supercritical Mach

number, a continuous flow with a small embedded supersonic zone is

obtained, and is depicted in Fig. 2a.
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3.4.2 Refined Solution Near the Body

Although the coarse solution does not have enough accuracy to

resolve the shock wave which occurs near the body, it provides a

fairly good representation of the flow field away from the body

where the flow is smooth. The strategy here is to use a larger

number of rays to represent the flow field close to the body, the

coarse solution at an intermediate value of &, say Ci. is used as

the outer boundary condition for the refined solution near the body.

In this way, the distance in the C direction is kept small and a

larger number of rays can be used without causing instabilities.

It is advantageous to integrate the equations in the n direction

if we wish to fit a shock in the flow field. Following the idea of

Fletcher [1975), we divide the region near the body into two parts.

The forward part is enclosed by = 0 , C
= Ci' n=-n, and n=q i , and

the rear portion by C= o =C i n =n. and 1 
= 0 , which we shall call

region I and region 2, respectively. The configurations are shown

schematically in Figs. 4 and 5. C. is chosen such that the point

(C iri) is at the top of the sonic line (see Fig. 2a). In our case,

ni = r/2.

In region 1, finite difference formulae of the form (3.7) and

(3.8) are used to calculate the derivatives in the n direction. The

ordinary differential equations (3.16) and (3.19) are integrated as

in the coarse calculation. No boundary condition is required on

n = i/2, since there is no influence from downstream in a supersonic

region, smooth transition through the sonic line will be sufficient

for uniqueness. Tangential velocities on the body are adjusted so

that velocities v at &i match those of the coarse calculation. Five

rays have been used in this region without encountering stability

K. C'
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problems.

In region 2, derivatives in the C direction are calculated by

finite difference formulae of the following form:

M
au = Eiu (3.59)

i=l

M
(av)

( Z H ivi  (3.60)£ i=1 
i

where M is the number of rays, E i and H i are matrices obtained by

Taylor series expansion. Expressions (3.59) and (3.60) are substituted

into Eqs. (3.46) and (3.47) to form a set of ordinary differential

equations. At n = Tr/2, the converged solution from region 1 is used as

the initial condition to integrate the equations from n = 7/2 to n = 0.

At n = 0, the symmetry condition v= 0 is imposed. However, in the

supersonic region the flow has no forewarning of the downstream con-

ditions and the flow will not be able to adjust to satisfy symmetry

conditions at n=O. Physically, the supersonic region is terminated by

a shock wave, the subsonic region behind the shock wave is subsequently

compressed to satisfy the boundary condition downstream. To account

for the embedded shock wave, the equations are integrated to an

intermediate value of n, say ns (), across which jump conditions

(3.44) and (3.45) are applied. The integration is then resumed and

carried out until n=0 is reached. Powell's method is used to adjust

the shock location ns until v becomes zero on n 
= 0. The location of

the shock is specified by its location on the surface and the shock

slope on other rays. It is known, a priori, that the local shock

shape must be normal to the surface in order to preserve the boundary

condition of zero normal flow at the surface.

By splitting the solution domain near the body into two parts, we
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have been able to integrate the equations of motion in different

directions. In the rear part we chose to integrate the equations in

the n direction so that a shock can be fitted in the flow field.

Since the flow is supersonic ahead of the shock and subsonic behind

(at least when boundary layer interaction effects are not considered),

no saddle point singularity is encountered, thus the integration can

be carried out without difficulty. As a word of caution, we note

that the shock wave does not extend all the way from the surface to

= (see Fig. 2b). If we use a large number of rays, the rays of

constant & with values close to will pass through the sonic line

and will cause difficulty if we try to integrate through this line.

Therefore care must be taken to ensure that no rays pass through the

sonic line.

After a converged solution for region 2 is obtained, the doublet

strength D will be re-calculated, and the whole procedure repeated.

The solution is considered to have converged globally when the values

of D at successive iterations agree to within the prescribed tolerance.

3.4.3 Powell's Method

To complete the description of our numerical scheme, we shall

describe Powell's method briefly; a more detailed analysis can be found

elsewhere (see Powell [1964]). The method minimizes

N 2
(3.61)

i=l 1

with respect to F1,F 2 .... FM (M <N), where the N functions ci are

nonlinear functions of the M unknowns F. The method is essentially3{
that of least square minimization in which Ec2 is minimized by makingIi

At

chnest F ccrin-o h drcto -ivnb
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M N c aE N Ek
E I k  F- i-

j=I k=1 i 3F j k=l k

i = 1 2 . .., M( 3 .6 2 )

New values of F are given by

F -old + A 6F (3.63)

in which A is chosen (by search) such that Ee is minimized along the1

direction 6F. During the search along 6F to locate the minimum,

functions E. have to be evaluated at different values of A; thus one1

can calculate the rate of change of c. along the direction 6F at the

new minimum point by finite differences. Powell shows how these

partial derivatives can be used in conjunction with previous values

of -. to determine values for the next step given by (3.62).
1

In principle the method guarantees convergence since a step is

2taken only when Zc. decreases. It also has quadratic convergence

provided one is sufficiently near the solution and c. =0 at the
m

minimum.

- .
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4.0 Results and Discussion

The algorithm introduced in the previous section is evaluated

in this section by presenting a range of numerically computed solutions.

Ellipses with thickness ratio 6= 0.4 and 6 0.2 are chosen for the

test cases. Free-stream Mach numbers are assumed to be high enough

so that a shock wave will always occur. Gross and Holt [1975]

reported critical flow for 6=0.4 at Mi =0.587. Symmetric, super-

critical, shock-free flows were obtained up to M =0.644. A range of

free-stream conditions has been chosen for our computations. For

thickness ratio 6 =0.4, free-stream Mach numbers were chosen to be

0.65, 0.66, 0.67 and 0.68. For 6=0.2, M =0.77. E. is assumed to

be 2.5, which was found to be sufficiently large by Gross and Holt

f19753. Three rays are used for the coarse calculation. When four

rays are used, the solution tends to oscillate in the & direction at

large , which is due to the instability discussed in Section 3.4.

For region 1 of the refined calculation, five rays are used without

encountering instability problems. However, for region 2 of the

refined calculation, only three rays can be used. Besides the

instability problem, there are possible singular points in the

ordinary differential equations depending on whether or not the rays

pass through the sonic points. This is due to the fact that the shock

does not extend all the way out to = &i. typically, the top of the

shock is located at approximately two-thirds of the distance between

Eo and yi" It follows that the use of more than three rays will cause

at least one ray to pass through the sonic point, which is hazardous

when integrating in the n direction.

The present results are compared with calculations using the

mi/
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shock-capturing method of Hoist [1979] and are shown in Figs. 6-10.

For 6= 0.4, at M =0.65, 0.66 and 0.67, the two methods agree very

well with the shock locations on the body almost identical. The

surface velocity profiles obtained by both methods show similar

characteristics. The flow undergoes a small compression before the

shock wave is encountered. Behind the shock, a small post shock

expansion wave is observed, after which the flow is recompressed back

to stagnation condition at the trailing edge. The two methods show

the largest discrepancies near the shock wave; in all the three cases

tested, Holst's method consistently obtains a higher maximum velocity

on the body and shows a steeper pre-shock compression. At M_ =0.64,

a solution with an embedded shock wave could not be obtained by the

present method. As can be seen in the solution at M" = 0.65, the shock

jump is very weak, and it is quite probable that symmetric shock-free

flows exist for free-stream Mach numbers lower than 0.05. However,

using Holst's method, a solution with shock jump is obtained for

MW =0.64. At NI = 0.68, the solution shows a local Mach number of

1.61 ahead of the shock, the isentropic assumption at this Mach number

will introduce an error of about 4.7% according to Eqs. (2.3) and (2.5).

Hence any solutions obtained at or above this free-stream Mach number

will be erroneous.

Due to the unstable nature of the present method, the round-off

error grows as exp(N. ), where N is the number of rays in the t direc-

tion. It is difficult to assess the accuracy of the method. Neverthe-

less, good agreement is obtained between the present method and the

shock-capturing method. The present method takes about 3 seconds to

execute on a CDC 7600, whereas Holst's method takes about 6 seconds for

a mesh size of 90x40.
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Unfortunately, the present method does not guarantee convergence

unless the initial guess is reasonably close to the converged solution.

One remedy is to increase the free-stream Mach number by a small frac-

tion at a time, say by 0.005, and then use the solution obtained for

a previous Mach number as an initial guess. Otherwise, good judgment

and trial and error are needed in providing a good initial guess.

I.
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5.0 Conclusions

A composite numerical scheme has been developed which is based

in part on Telenin's Method and in part on the Method of Lines. The

numerical method has been designed to solve for supercritical flow

over an ellipse, when the free-stream Mach number is high enough to

generate an embedded shock wave in the flow field. A fitting

technique is used to determine this shock so that the Rankine-

Hugoniot jump conditions are satisfied exactly across the shock wave.

Good agreement is obtained between the present method and the

shock-capturing technique. Further improvement in the present method

can be achieved by the introduction of non-symmetrical flow effects

into the solution over the forward part of the ellipse. To this end,

it is desirable to represent the far flow field solution in terms of

distributed singularities along the major axis of the ellipse rather

than in terms of singularities all located at the ellipse center.

-p
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FIG. 3(b) SINGULAR ELLIPSE FOR SECOND FORMULATION.
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